题目1 : Robots Crossing River
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
Three kinds of robots want to move from Location A to Location B and then from Location B to Location C by boat.
The only one boat between A and B and only one between B and C. Moving from A to B (and vise versa) takes 2 hours with robots on the boat. Moving from B to C (and vice versa) takes 4 hours. Without robots on the boat the time can be reduced by half. The boat between A and B starts at time 0 moving from A to B. And the other boat starts 2 hours later moving from B to C.
You may assume that embarking and disembarking takes no time for robots.
There are some limits:
Each boat can take 20 robots at most.
On each boat if there are more than 15 robots, no single kind of robots can exceed 50% of the total amount of robots on that boat.
At most 35 robots are allowed to be stranded at B. If a robot goes on his journey to C as soon as he arrives at B he is not considered stranded at B.
Given the number of three kinds robots what is the minimum hours to take them from A to C?
输入
Three integers X, Y and Z denoting the number of the three kinds of robots. (0 ≤ X, Y and Z ≤ 1000)
输出
The minimum hours.
样例输入
40 4 4
样例输出
24
分析
这道题目来源是某北美startup的面试题,看上去比较复杂,可能是为了考察候选人分析问题的能力?
首先需要看出整个流程的瓶颈
完全在B-C这一段(B-C段花费时间比较长),换句话说我们只需求出所有机器人从B到C的最少时间,再加上2小时就是答案。事实上这个时间恰好等于把所有机器人直接从B运到C最少需要的船次x6。
如果没有“一船超过15个机器人则每种机器人不能超过半数”的限制,我们只需要20/船运走即可,最少船次是ceil((X+Y+Z)/20)。
由于有上面的限制,我们需要仔细讨论一下XYZ的相对大小。不妨设X >= Y >= Z,同时我们称三种机器人也为X、Y、Z类。
1、如果X <= Y + Z,那么我们仍然可以20/船运走,同时所有船都没有机器人超过半数。
这种情况最少船次仍然是是ceil((X+Y+Z)/20)。
2、 如果X > Y + Z,这时我们没办法使所有船都载20机器人。但是我们当然希望能尽量派出载20机器人的船。于是有如下贪心策略:
1) 首先尽量10个X类和10个非X类组成一船,派出若干船直到非X类不足10个机器人。
2) 余下若干(不足10个)非X类机器人,配合尽可能多X类机器人组成一船。这里需要讨论余下的非X类机器人有多少个,不妨设为K。如果K不足8个,那么最多配合15-K个X类机器人,组成一船15个机器人;否则可以配合K个X类机器人,组成一船2K个机器人。
3) 最后只剩下若干X类机器人,这些机器人只能15/船派出。
B点最多放35个机器人完全是多余的条件,从A到B后船上的机器人直接转移到第二艘船上,就不认为是滞留的机器人。这个题应该设定了从A到B的船不能到C区。
CODE
1 |
|